Table I
o-Phthalic Acid Diamides

R_{i}	R_{1}	Over-all yield, $\%$	$\underset{\substack{\text { Reystn } \\ \text { solvent }{ }^{a}}}{\text { crys. }}$	Mrp, ${ }^{\circ} \mathrm{C}$	Formula	-Carbon. \%--		-Hydrogen, \%-		--Nitrogen. \%-.	
						Caled	Found	Caler	Found	Caled	Found
H	H	8.7	M	25-	$\mathrm{C}_{44} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{2}$	70.06	69.88	S. 04	4.94	11.67	11.78
H	(H ,	. 4	$\mathrm{Fin}_{\text {ibe }}$	228 dec	$\mathrm{C}_{1} \mathrm{H}^{2} \mathrm{H}_{4} \mathrm{~N}_{2} \mathrm{O}_{2}$	70.87	70.50	5.52	-5.92	11.02	11.02
1 I	$\mathrm{C}_{2} \mathrm{H}_{5}$	8.5	I:	208	$\mathrm{C}_{66} \mathrm{H}_{66} \mathrm{~N}_{2} \mathrm{O}_{2}$	71.70	71.78	6.02	6.19	10.45	10.10
H	$n-\mathrm{C}, \mathrm{H}$;	7	$1:$	212	$\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{4}$	72.40	72.11	6.43	6.35	9.95	9.95
H	$n-\mathrm{C}_{4} \mathrm{H}$	S1	F:	208	$\mathrm{C}_{18} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{2}$	73.003	73.28	6.81	6.98	9. 46	9.44
H	$i-\mathrm{C}_{3} \mathrm{H}_{4}$	67	F,	233	$\mathrm{C}_{1} 1 \mathrm{H}_{1 \times 2} \mathrm{~N}_{2}()_{2}$	72.40	72.28	6. 4:)	6.50	9.93	9.68
H	$t-\mathrm{C}_{4} \mathrm{H}$,	74	F:	24:	$\mathrm{C}_{18} \mathrm{H}_{211} \mathrm{~N}_{2} \mathrm{O}_{2}$	73.03	-3.08	6.81	7.03	9. 46	9.20
H	$\mathrm{C}_{6} \mathrm{H}_{11}$	68	F:	225	$\mathrm{C}_{411} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2}$	74.60	74.44	6.8 .9	6.87	S.70	8.87
H	$\mathrm{CH}_{0} \mathrm{C}_{6} \mathrm{H}$	82	F	203	$\mathrm{C}_{21} \mathrm{H}_{1} \mathrm{~N}_{2} \mathrm{~N}_{2}$	76.4.)	76.56	5.50	5.78	8.49	8.33
H	$\mathrm{C}_{6} \mathrm{H}$.	67	N	2596	$\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}$	76.01	76.21	5. 10	S. 11	N.si	(9, 010
H	${ }_{o-}-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$	is	B	217	$\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{H}_{2} \mathrm{O}_{2}{ }_{2}$	76.4.)	76.03	\%, 0	5. 32	S.49	8.61
11	$m-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$	S1	B	20:3	$\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{~S}_{2} \mathrm{O}_{2}$	76.43	76.69	S. 0	S.70	8.49	8.57
11	$p-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$	3	B	228	$\mathrm{C}_{21} \mathrm{H}_{1} \times \mathrm{N}_{2} \mathrm{O}_{2}$	76.43	76.39	5.50	-. 38	s.4!	8.56
11	$o-\mathrm{OHC}_{6} \mathrm{H}_{4}$	60	fialw	26.3	$\mathrm{C}_{26} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{3}$	72.35	72.33	4.86	4.85	8.44	8.67
11	m-()HC66 $\mathrm{H}_{\text {\% }}$	74	A_{66}	211	$\mathrm{C}_{20} \mathrm{H}_{162} \mathrm{~N}_{2} \mathrm{O}_{2}$	72.35	-2.59	4.86	4.74	8.44	8.5
H	$p-\mathrm{OHC}_{6 j} \mathrm{H}_{4}$	7.	A_{3}	190	$\mathrm{C}_{24} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{NO}_{2}$	72.35	72.44	4.86	S. 13	8.44	8.53
CH_{3}	CH_{3}	39	A.s	182	$\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2}$	71.64	72.102	5.97	6.15	10.44	10.0.5
$\mathrm{C}_{2} \mathrm{H}_{5}$	$\mathrm{C}_{2} 11$.	76	A;	124	$\mathrm{C}_{241} \mathrm{H}_{1 \times 2} \mathrm{Na}_{2} \mathrm{O}_{2}$	73.03	72.95	6.81	6.82	9. 46	(). 20
$\mathrm{CH}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$	CHeC $\mathrm{C}_{6} \mathrm{l}$,	:9	H_{4}	161	$\mathrm{CH}_{3} \mathrm{H}_{44} \mathrm{~N}_{2} \mathrm{O}_{2}$	80.07	79.90	-. 76	6.03	6.67	6.95
		64	A	168.5	$\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2}$	74.90	73.95	6.85	6.59	9.10	(). 34

 ${ }^{\prime}$ J. B. Tingle and H. F. Noiker [Am. Chem. J., 30, 1889 (1908)] report mp 168°. Some of onr samples melted sharply at 219° but. in most cases the recorded melting puint was registered. Nevertheless all samples gave good analytical data.
 is a clear indication that the dianide compomind has been transformed into one of the twor posible imider, hanally N-phenfphthalinide. Ultraviolet pectroscopy is less useful since un correlation between absuption band at $2.4-230$ and $2,01-260$ $m \mu$ and stricture is apparent.

Acknowledgment.-The athors gratefully acknowledge at grant (1222) from the National Research Commeil of Argentina and a scholarship awarded to one of them (E. (i. D). de T.). They thank Mrs. B. B. de Deferrari and Mr. Charles Beazley for the microanalyses recorded.

Possible Antifertility Compounds. IV. ${ }^{1}$ Diphenylnaphtho[1,2-b]- and Diphenylnaphtho[2,1-b]furans

\therefore S. Tiwiri ind S. C. Srivistavil
Drpartment of Chemistry, CDiversity of Lucknow, Lurknow, India
hereived theil 4, 196i

In view of the potent estrogenic activity shown by a large series of phenanthrene compounds, the presence of this noleus in the steroidal sex homones and the close resemblance of naphthof uran (1) phenanthrene, the naphthofnrans of type I and II were synt hesized (wee Tables I and II on the following page).

I
IIa. X or $\mathrm{X}^{\prime}=\mathrm{OH}$ b, X or $\mathrm{X}^{\prime}=\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{~N}<$

Experimental Section ${ }^{2}$

2,3-Bis(p-methoxyphenyl)naphthol $[1,2-b]$ furan (1).- α-Naphthot (0.01 mole), p, p^{\prime}-dimethoxybenzoin (0.01 mole), freshly distilled peroxide-free dioxane (30 ml), and concentrated HCl (10 ml) were reflused for 24 hr . The solntion was poured into water, the gily layer wav taken up in ether, and the ethereal layer which exhibited a blne-violet fluorescence was washed with $1, \mathrm{NaOH}$ until the alkaline layer was colorless and finally with water. Sufficient petroleum ether (bp $60-80^{\circ}$) was added to the dried clear ethereal solntion, and the vellowish solid which separated ont was filtered. Two recrystalizations from hot petroleum ether yielded the pure compomm, mp 12()-121°, yield 29.6\%.

Anal. Caled for $\mathrm{C}_{26} \mathrm{H}_{20} \mathrm{O}_{3}$: C, 82.12 ; $\mathrm{H}, \mathrm{i} .26$. Found: C, 81.02; H, 5.18 .

7-Hydroxy-1,2-bis (p-methoxyphenyl)naphtho [2,1-b] furan (5) was prepared from 2,6-dihydroxynaphthalene and p, p^{\prime}-dimethoxybenzoin as described above. In this case the ethereal extract was treated with $8{ }_{6}^{\circ} \mathrm{NaOH}$, and the alkaline extract was acidified. The separated product on isolation with ether and subsequent treathent with petroleum ether gave a dark oilymaterial. The granular crystals which separated out from the oil after 2-3 days, on recystalization from benzene-petroleum ether, gave pure $5, \mathrm{mp} 167^{\circ}$, yield 67°. .

Anal. Calcd for $\mathrm{C}_{46} \mathrm{H}_{4} \mathrm{O}_{4}:$ C. $7 \times .80$; $\mathrm{H}, ~$ 万. (04. Found: (1) $78.70 ; \mathrm{H}, ~ 5.57$.

Dialkylaminoethyl Ethers (IIb) of Substituted Diphenylnaphtho $[2,1-b]$ furans (IIa).-A mixture of the appropriate dialkylaminothyl chloride hy-drochloride (0.001 mole), hidroxynaphthofuran (0.001 mole), freshly dried $\mathrm{K}_{2} \mathrm{CO}_{3}(1 \mathrm{~g})$, and acetone (25 ml) was refluxed for 24 hr . After removal of acetone, the mixture was treated with warm water and cooled, and the solid which separated oit was filtered and recrystallized from aqnems aretone.

Acknowledgment. Thanks are due to Professor A. B. Nell for lis interest in the present work. One of the authors (S. C. S.) is grateful to the Council of scientific and Industrial Research, New Delhi, for the grant of a junior research fellowship.

Tinese I

Nis．	12		Yiend．		Fintula	（abud．M－		－romid．！；－	
		R＇				$1 \cdot$	H	\bigcirc	II
\because	$0-9) \mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{IF}$	$\mu-() \mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{IF}_{4}$	$2(1,5$	113－11．i	（ ${ }_{6} \mathrm{Hax}_{5}$	212	－ 26	＊1：34	－ i （i11
：	$0-\mathrm{OCH} \mathrm{H}_{3} \mathrm{C}_{6} \mathrm{HI}_{4}$	o－0 $\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$	29	12		212	$\therefore 2 \mathrm{i}$	W142	．$: 3 \mathrm{~F}$
4		$3,4-\mathrm{CH}_{2} \mathrm{O}_{2} \mathrm{C}_{3} \mathrm{H}_{3}$	2．）	13	$(\because 21510)$ ，	－6，49		76	＋is

Time 11

					M11．		－raicil．：${ }^{\text {a }}$			－－小川．．．		
Nin，	$x{ }^{-1}$	12	R^{\prime}	\because	${ }^{\circ} \mathrm{C}$	Furmuia	\because	11	\cdots	i	11	\cdots
${ }^{\text {G }}$		$\mathrm{HOCO}^{\left(\mathrm{H}_{3} \mathrm{C}_{6} \mathrm{H}_{4}\right.}$	m－OCH：C\％ $\mathrm{H}_{\text {c }}$	！10	10i－103				2．8：			
「				92	10	$\mathrm{CaHm}_{\mathrm{Ma}} \mathrm{NO}_{4}$			－i．in			271
8				！	81－88	（\％Hs，Nos			2．マ4			181
$!1$	0 H		p－OCH2 $\mathrm{O}_{6} \mathrm{CH}_{4}$	（9）	178		；8．80	i） 11		24．11	3．12	
1）		${ }_{\text {c－}} \mathrm{O} \mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$	p －OCO $\mathrm{Hax}_{3} \mathrm{H}_{4}$	88	$!16$	Cumanior			2．82			－
i				$!$	$88-80$				－8．j			\because
12			${ }_{\text {ma）}} \mathrm{OH}_{3} \mathrm{CHH}_{4}$	84	96－：17				1． 7			± 3
1：	011 H1		$\cdots \mathrm{OCH} \mathrm{H}_{\text {（ }}^{6} \mathrm{H} \mathrm{H}_{4}$	70	$\begin{gathered} \text { 18:3-184 } \\ \text { Hec } \end{gathered}$	（	78．80	5． 04		18．34	5．2	
14		W－OCHAS＊ Ha_{4}	W－OCHaCMint	8 ij	4－92	（			2．83			2is
1.5				！ 0	88－8！	（ whsmo			－			$\because 3$
16			${ }^{\sim}-\mathrm{OCH} \mathrm{H}_{3} \mathrm{CH} \mathrm{H}_{4}$	：	！（0）	（ximents			2．74			$\because 65$
17	II OHI		p－OCHaCs $\mathrm{H}^{\text {a }}$	（j）	14－－11．		88．80	3.01		i8．4i	T． 1	$2 \cdot 8$
18	11 O（HECHEN（CH5）：	${ }^{2} \mathrm{OCOH} \mathrm{O}_{6} \mathrm{H}_{4}$	$p-\mathrm{OCH}_{8} \mathrm{C}_{6} \mathrm{H}_{4}$	84	！	$\mathrm{C}_{30} \mathrm{Hax}^{2} \mathrm{NO}_{4}$			2．8：			
$1!1$	II			$8: 1$	4） $1-6.5$				3			2 ：$!$
21）	11		$p \mathrm{OCH} \mathrm{H}_{5} \mathrm{iH}$	！ 1	8．－88							2
$\because 1$	II OHI		o－OCHarsil	（j）	$18 \% 175$	（	88．80	5． 04		88．71	3.101	
\because		$\cdots \mathrm{OCHECO} \mathrm{H}_{4}$	${ }_{\text {u－}}\left(\mathrm{CH}_{4} \mathrm{C}_{6} \mathrm{H}_{4}\right.$	80	100－101	（ wifmion			－ 8.8			2.81
23	$\text { II och CH: } \mathrm{N}_{5}$	O－OCH：C3H4		8	10－111	$\mathrm{CwH}_{3} \mathrm{NO}_{4}$			1－3			2 ix
$\because 4$	11	OHOCH		82	96	（\％\％ $12, N 0$			2.4			2．8：

Some 2－Aryl－5－nitrobenzimidazole 3－Oxides

$$
\text { 1). W1 } 111 \text { ceme }
$$

Tayforl Laboatories，Tompor Abbey howh， London．ㅅ．11．10．Englume

I Corivatives of benzinidazole ate of interest as potential anti－ nocabolites．The sunthesis of wne 2 －ary－5－nitrobenzimidazole ： 3 －oxides is reported here．？The sarting material，4－nitro－2－ nitmananiline，${ }^{3}$ was prepared by an improved procednre．

Experimental Section ${ }^{\text {＊}}$

[^0]dinitrobenzene（l2．（1 mb）for 2 hr，and the chen solntion of N－ （ 2.4 －dinitrophenylalanine was dilnted to 81 ．with $)^{-r}$（w／v） abneons NaflCO．The dinted whation was photnlyed in
 room temperaine for 16 har while being stired vigurasty baits with a magnetie stirrer and with a brisk flow of air tor remove
 （ $\epsilon 15,100,11,200)]$ wis filtered off，washed well with water，alud
 mp $18: 3-1 \mathrm{si} 0^{\circ}$ ，suldiently phre for finther nes．

2－Aryl－5－nitrobenzimidazole 3－Oxides．－－－A whintin of f－ninsu－

[^1] Gil Fingelinary Hanoria Lamps，Bath Ruad，Shongh，Incks，England．

[^0]: Sania，Cunala．

[^1]: （196：5）

 Microunalyses were by ior．F．Pascher，Honn，West Gemany．

